


Usure des outils et Vitesse de coupe économique

Détermination d'une vitesse de coupe économique (Vc-éco)

Usinage en tournage de 100 platines suivante : Matière INOX 316L

Usinage en tournage : Vc employée : 120 m/min

Outil à plaquette carbure :

Partie A.

- ✓ C_0 : Prix d'une plaquette carbure par arête de coupe.
- ✓ V_c : Vitesse de coupe
- ✓ T_{100} : Temps d'usinage pour 100 pièces.
- ✓ L_{100} : Longueur totale du parcours de l'outil pour 100 pièces ($L_{100} = Vc \times T_{100}$).

En utilisant les informations données ci-dessus, Calculer C_0 et L_{100} .

Partie B.

T : Durée de vie d'une arête de coupe.

 C_{100} : Coût d'usinage pour 100 pièces (Coût net ! hors temps improductifs : réglages, changement outils...).

 C_m : Coût horaire machine.

 N_a : Nombre de changements d'arêtes de coupe.

 V_c = Vitesse de coupe « quIconque ».

- Pour l'usinage des 100 platines : $V_c = 120 \, m/min$.
- $C_m = 60 \, \epsilon/h$.
- $T=C_v\times V_c{}^n$ (Loi d'usure pour ce couple Outil/matière), avec les coefficients suivants : $C_v=8.1\times 10^9$ et n=-4.2
- $C_{100} = C_m \times T_{100} + C_0 \times N_a$
- <u>a.</u> Exprimer T_{100} en fonction de Vc.
- **<u>b.</u>** Exprimer N_a en fonction de Vc.
- \underline{c} . En déduire l'expression de C_{100} en fonction de Vc.

Partie C.

- <u>a.</u> Tracer la courbe de la fonction $C_{100} = f(Vc)$ dans le repère ci-dessous.
- <u>b.</u> En déduire la vitesse de coupe économique (Vc-éco) .

Partie D. (Pour les plus forts !!!)

$$\begin{array}{ccc} \text{Vc} & \longleftrightarrow & x \\ C_{100} & \longleftrightarrow & f(x) \end{array}$$

- **a.** Calculer f'(x).
- **<u>b.</u>** Résoudre l'équation f'(x) = 0.
- <u>c.</u> En déduire la vitesse de coupe économique (Vc-éco).